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a b s t r a c t

Metabolic profiling of biofluids, based on the quantitative analysis of the concentration profile of their
free low molecular mass metabolites, has been playing increasing role employed as a means to gain
understanding of the progression of metabolic disorders, including obesity. Chromatographic methods
coupled with mass spectrometry have been established as a strategy for metabolic profiling. Among
these, GC–MS, targeting mainly the primary metabolism intermediates, offers high sensitivity, good
peak resolution and extensive databases. However, the derivatization step required for many involatile
metabolites necessitates specific data validation, normalization and analysis protocols to ensure accu-
rate and reproducible performance. In this study, the GC–MS metabolic profiles of plasma samples from
mice maintained on 12- or 15-month long low (10 kcal%) or high (60 kcal%) fat diets were obtained.
The profiles of the trimethylsilyl(TMS)-methoxime(MeOx) derivatives of the free polar metabolites were
acquired through GC–(ion trap)MS, using [U–13C]-glucose as the internal standard. After the application
ultivariate statistical analysis
of a recently developed data correction and normalization/filtering protocol for GC–MS metabolomic
datasets, the profiles of 48 out of the 77 detected metabolites were used in multivariate statistical analy-
sis. Data mining suggested a decrease in the activity of the energy metabolism with age. In addition, the
metabolic profiles indicated the presence of subpopulations with different physiology within the high-
and low-fat diet mice, which correlated well with the difference in body weight among the animals and

hype
current knowledge about

. Introduction

Obesity is a major and rapidly expanding medical problem for
odern western societies [1]. Understanding the progression of the
isease and the molecular mechanisms characterizing its effect on
he physiology of the affected individual and its connection with
ther hormonal dysfunctions is of great importance for identifying
ays to reverse and/or prevent its distressing consequences [2]. To

� This paper is part of the special issue “Enhancement of Analysis by Analytical
erivatization”, Jack Rosenfeld (Guest Editor).
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6504, Greece. Tel.: +30 2610 965249; fax: +30 2610 965223.
E-mail address: mklapa@iceht.forth.gr (M.I. Klapa).

1 Current address: Department of Cancer Studies and Molecular Medicine, Uni-
ersity of Leicester, UK.

570-0232/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jchromb.2011.01.028
rglycemic conditions.
© 2011 Elsevier B.V. All rights reserved.

this extent, analysis of the molecular composition of biofluids at
the protein and metabolic levels has served in monitoring molecu-
lar changes that characterize the effect of high-fat diet on the onset
and progression of obesity in animal studies and the human [3–5].
However, identifying specific and sensitive markers of diet-related
effects in biofluids, the latter being the mirror for physiological
changes occurring in the body, is not a trivial task. In the systems
biology era, the quest for accurate and sensitive markers of com-
plex biological phenomena has shifted towards the identification
of characteristic multi-component molecular profiles rather than
depending on single molecules [6,7]. Therefore, the development of

validated methods for the accurate metabolite profiling of bioflu-
ids is important, particularly for determining the progression of
metabolic dysfunctions, including obesity [8,9].

Nuclear magnetic resonance (NMR) spectroscopy and mass
spectrometry (MS) coupled with a chromatographic method are

dx.doi.org/10.1016/j.jchromb.2011.01.028
http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
mailto:mklapa@iceht.forth.gr
dx.doi.org/10.1016/j.jchromb.2011.01.028
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Table 1
The body weight (BW) of the mice in this study on the day of the blood sample
acquisition.

Animal ID Diet BW (g) Mean BW ± SD

Diet duration: 12 months

LF3 Low-fat 38
HF3 High-fat 57

53.6 ± 7.3

HF8 High-fat 45
HF9 High-fat 55
HF11 High-fat 60
HF12 High-fat 63
HF13 High-fat 51
HF14 High-fat 44

Diet duration: 15 months

LF1 Low-fat 42
41 ± 6.6LF2 Low-fat 47

LF4 Low-fat 34
HF1 High-fat 58

55.4 ± 6.5

HF2 High-fat 67
HF4 High-fat 58
HF5 High-fat 52
HF6 High-fat 60
HF7 High-fat 51
HF15 High-fat 48
HF16 High-fat 49
468 K. Spagou et al. / J. Chrom

he analytical techniques, which have been mainly used for high-
hroughput metabolic profiling analysis (metabo -l- or -n- omics),
ither separately or in combination for a large number of appli-
ations and biological systems [10–15]. The advantages of MS
ompared to NMR remain (a) the generally higher sensitivity of MS,
hich enables the use of smaller quantities of biological material

12,16,17], and (b) the potential for the analysis of a larger number
f metabolites in a single run [16,17]. Among the “hyphenated” MS
ethods for metabolomic analysis, gas chromatography (GC)–MS
ith electron ionization remains a technique of choice for the
etabolic profiling of polar intermediates of primary metabolism

ue to its high sensitivity, excellent resolution compared to LC
ue to a better discrimination of the compounds in the gas than

n the liquid phase, capability for unknown compound identifi-
ation based on the fragmentation pattern and well-established
nalyte databases for metabolite identification [12,18]. These, and
ther advantages [13], render GC–MS a useful and lasting tool for
etabolomic-based molecular diagnosis. However, GC–MS-based
etabolomics requires the derivatization of the extracted metabo-

ites into volatile and thermally stable compounds. Due to the
erivatization step, specific data validation, correction/filtering and
ormalization procedures are necessary to ensure comparability
etween profiles and to avoid assigning biological significance
o experimental biases, which are due mainly to incomplete
erivatization and the formation of multiple derivatives for some
ompounds [18,19]. Lacking appropriate GC–MS metabolomic
ata correction methodology from derivatization biases, GC–MS
etabolomics has not been the technique of choice for the anal-

sis of biological fluids in the context of obesity and high-fat diet
esearch. Thus, there is a considerably limited number of relevant
C–MS metabolomic analyses for any biological fluid compared to

he LC–MS and NMR studies. GC–MS has often been used for the
etabolic profiling of plant or animal tissues, in which more com-

lex matrices are encountered, but usually of larger sample volume
nd thus metabolite extract than in the analysis of biological flu-
ds, especially blood plasma. In the case of small plasma sample
olumes, the better discriminatory power of GC compared to the
C for some small metabolites, which are key intermediates and
arkers of activity of specific pathways, is of importance. In addi-

ion, biological fluids being the mirror of activity of many tissues,
he higher sensitivity of GC–MS compared to LC–MS could allow
or the quantification of metabolites that are in small quantities and
ould potentially indicate subtle physiological differences between
amples that could have been unobservable in the LC–MS profile.
or these advantages to be available, the GC–MS metabolic profile
as to be appropriately corrected from experimental biases.

In this study, we applied GC–MS metabolic profiling for the anal-
sis of plasma samples from mice maintained on 12- or 15-month
ong low- or high-fat diets, in order to characterize metabolic dif-
erences between the groups. The GC–MS metabolic profiles were
btained using an ion-trap MS and a recently developed data cor-
ection and normalization methodology for derivatization biases
18,19] was applied on the acquired dataset to ensure accurate
nd validated performance. Here, the application of this data nor-
alization method is described in detail to provide a reference

or its application in other biological fluids too. The corrected
etabolic profiles were analyzed using multivariate statistical

nalysis, the results of which were interpreted in the context of
he currently known physiological information about the effect of
igh- and low-fat diets. This enabled the identification of subgroups
f animals, which phenomenologically may have had a different

han “expected” metabolic physiology, but the careful analysis of
he multi-compound profiles indicated special characteristics that
lustered them together. Our objective is to show that if appro-
riately corrected, GC–MS metabolomic data could be a valuable
esource either alone or in combination with LC–MS and NMR data
Low-fat diet: 10 kcal%.
High-fat diet: 60 kcal%.
SD, standard deviation

for the analysis of the biological fluid composition in the context of
obesity research.

2. Materials and methods

2.1. Experimental design and setup

Nineteen (19) C57Bl6J mice obtained from Harlan UK Ltd. (Bices-
ter, UK) were used in this study separated into two different groups
based on their diet (see Fig. 1). Specifically, four (4) mice were
fed low-fat purified rodent diet with 10 kcal% fat (D12450B) and
fifteen (15) a similar diet but containing 60 kcal% fat (D12492),
both purchased from Research Diets Inc., New Brunswick, NJ, USA.
The experiment was carried out under project license PPL 40/2527
granted by the UK Home Office and in accordance with the Home
Office regulations and the protocol was reviewed by the Leicester
University Local Ethical Committee for Animal Experimentation.

Seven (7) animals from the group of high-fat diet and one (1) ani-
mal from the group of low-fat diet were sacrificed 12 months after
commencing the diet, while the rest (i.e. eight (8) from the high-fat
diet group and three (3) from the low-fat diet group) were sacrificed
15 months after commencing the diet (according to the standards
of the international statutes on pain minimization (86/609/EEC)),
and a full autopsy was conducted. The weights of the animals at
the autopsy are shown in Table 1. Blood samples were obtained by
tail puncture. Plasma was isolated after centrifugation of the blood
samples at 1700 × g and 4 ◦C during the first hour after blood acqui-
sition. The plasma samples were stored at −80 ◦C pending analysis.

2.2. Metabolic profile acquisition and normalization

[U–13C]-glucose (Cambridge Isotope Laboratories, Cambridge,
MA, USA) was added to the plasma samples as the internal stan-

dard at a concentration of 0.6 �L/�L of plasma and the samples
were subsequently dried in vacuum at room temperature in a pre-
cooled rotor. In light of their small volume, the duration of the
vacuum drying was short for all samples, while careful monitor-
ing of the drying process limited significantly the probability for
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Fig. 1. Schematic of

etabolite evaporation. Cold HPLC-grade methanol was added to
he dried plasma samples at the volumes shown in Supplementary
ile 1; the samples were placed in a 70 ◦C water-bath for 15 min and
volume of water equal to that of the methanol was then added.
fter centrifugation at 1500 × g for 10 min, the supernatants were
oncentrated in vacuum. The dried polar extracts were derivatized
o their (MeOx)TMS-derivatives through reaction with 20 mg/mL

ethoxyamine hydrochloride (Alfa Aesar, UK) solution in pyridine
or 90 min, followed by reaction with N-methyl-trimethylsilyl-
rifluoroacetamide (MSTFA) (Alfa Aesar, UK) at room temperature
or at least 6 h (see [18,19] and further explanation in Section 3); the
olumes of methoxyamine hydrochloride and MSTFA used for each
ample are shown in Supplementary File 1. The metabolic profiles
f the derivatized samples were acquired using the Saturn 2200
as chromatograph–(ion trap) mass spectrometer (Varian Inc., CA,
SA) at 1:10 split ratio (GC column: Phenomenex #7HG-G004-11-
, USA). The peak identification and quantification were carried
ut as described in [19]. The raw metabolomic dataset comprised
7 peaks, each of which corresponded to a compound of known
hemical category according to the category definition in [18,19],
nd had been detected in at least one of the acquired metabolic
rofiles.

The relative areas of all detected peaks (RPAs – relative peak
reas) were estimated from their normalization with the 323
arker ion peak area of the second derivative (MeOx2) of the

nternal standard [U–13C]-glucose. Moreover, the recently devel-
ped data validation, normalization and correction methodology
or GC–MS metabolomic datasets [19] was applied to account for
he derivatization biases [18,19]. First, we verified same GC–MS
perational conditions during the acquisition of all metabolic pro-
les based on the criterion described in [18,19], using the ratio
f the 323 marker ion peak areas of the two derivatives of the
nternal standard [U–13C]-glucose. According to this criterion, four

etabolic profiles were excluded from further analysis (shown in
range background in Supplementary File 2A). It has to be noted
hat according to measurements in our laboratory using glucose
tandards and mouse plasma samples from the same batch as those
sed in the present study (i.e. with similar concentration of intra-
ellular glucose), we observed (as it is the case with other biological
atrices too) that at these internal glucose concentrations, the con-

ribution of its 323 (M+4) ion peak area to the measured 323 ion

eak area, which is used as characteristic of the internal standard, is
lmost non-existent and cannot affect the accuracy of the internal
tandard measurement used for data validation and normalization.
econd, we calculated the cumulative (effective) RPA for the amine-
roup containing metabolites for which more than one derivative
perimental design.

peaks were detected in the metabolic profiles as the weighted sum-
mation of all their derivative RPAs, according to the data correction
strategy described in [18,19]. In this case, only alanine was iden-
tified with two derivative peaks. The metabolic profile of sample
HF16 (a mouse on the 15-month high-fat diet), which was acquired
at seven different silylation times equal to or longer than 6 h (see
Supplementary File 2A), was used for the estimation of the weight
coefficients for the two derivative RPAs of alanine based on the
algorithm described in [19]. The amine-group containing metabo-
lites, for which only one derivative was detected in at least one of
the metabolic profiles (i.e. ethanolamine, lysine, glutamate, glycine,
serine and valine), but for which more than one derivative is known,
were also considered; most often they are filtered out at a later
step (in this case this happened for all but lysine), because of a
high coefficient of variation for their RPAs between injections of the
same sample (see below). Further, (a) the smallest of the two MeOx
peaks of the known ketone-group containing metabolites (see
[19]), (b) the peaks corresponding to unknown amine-group con-
taining metabolites (see [19]), (c) the peaks (i) that were identified
as artifacts due mainly to column bleeding, or (ii) with significant
carry over, or (iii) that were inconsistently detected among sam-
ples and/or injections of the same sample, or (iv) with significant
mean coefficient of variation between injections over all samples,
were filtered out of the analysis. After this normalization and fil-
tering step, the RPA profiles that were used for further analysis
included 50 metabolites (shown in Supplementary File 2B). Sub-
sequently, the arithmetic mean of all metabolic profiles acquired
for each mouse was estimated and these 19 mean metabolic pro-
files (provided in Supplementary File 2) were used in the TM4 MeV
(v4.6) omic data analysis software [20] with an 80% cut-off. In this
way, two (2) additional metabolites were excluded from further
analysis, the unknown 1328 and 4-hydroxybutyrate. In the final
48-metabolite profiles, any missing RPAs were imputed using the k-
nearest neighbor’s algorithm [21], as implemented in the TM4 MeV
software.

2.3. Metabolomic data analysis

The multivariate statistical analyses applied to the 48-
metabolite profiles were based on both the non-standardized and
the standardized metabolite RPAs. Specifically, the standardized

RPA of metabolite M in the j-th metabolic profile, stRPAMj

, is equal
to:

stRPAMj
=

RPAMj
− RPAM

SDRPAM

(1)
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here RPAMj
, RPAM, SDRPAM are, respectively, the RPA of metabo-

ite M in the j-th metabolic profile, the mean RPA of metabolite M
ver all metabolic profiles and the standard deviation of the RPA
f metabolite M over all metabolic profiles. The use of standard-
zed relative peak areas in these analyses was required due to the
arge variance in the order of magnitude of the RPAs among the
ifferent metabolites in the same metabolic profile. When non-
tandardized values are used, this variance biases the results in
ccordance mainly with the variation in the concentrations of the
igher-order of magnitude metabolites, as it will be shown in Sec-
ion 3.

The “omic” data analysis software TM4 MeV (v4.6) [20] was used
o mine the metabolomic dataset. Specifically, hierarchical clus-
ering (HCL) using Euclidean, Manhattan or Pearson correlation
istance metrics was used to cluster the samples or the metabo-

ites based on their profiles. Principal component analysis (PCA)
as used to visualize whether the various plasma samples could

e differentiated based on their metabolic profiles. The metabolites,
he concentration of which was significantly higher or lower in a
et of plasma samples compared to another, will be referred to as
ositively or negatively, respectively, significant metabolites of the
articular comparison. The significant metabolites were identified
sing unpaired Significance Analysis of Microarrays (SAM) [22].

. Results and discussion
.1. Correction strategy for the derivatization biases

In the case of a raw GC–MS metabolomic dataset, two types of
iases are encountered and need to be corrected before any analysis

ig. 2. (A) HCL (Euclidean distance for both samples and metabolites) and (B) PCA of the p
nd green color-code refers to the same profiles in the two analyses. PC1, PC2 and PC3 refe
omponents 1, 2 and 3, respectively. The discriminatory metabolites between the red and
n this figure legend, the reader is referred to the web version of the article.)
B 879 (2011) 1467–1475

to extract biologically relevant conclusions can be applied [18]. The
first type is common among all analytical techniques and refers to
variations among metabolic profiles due to e.g. differences in the
original sample size, or systematic biases introduced at the var-
ious steps of the multi-step procedure, which affect equally all
metabolites in the original sample. This type of bias is corrected
with the use of (an) internal standard(s) spiked into all samples
at the same concentration with respect to the size of the sample.
The compound(s) used as internal standard(s) should not be among
the endogenous metabolites of the analyzed biological sample. The
internal standard concentration should be selected similar to the
mean metabolite concentration expected to be measured in the
analyzed biological sample to avoid dividing the metabolite peak
areas with a very large or a very small number. Ribitol has been
an internal standard of choice in GC–MS metabolomics [18,23,24],
however, ribitol was detected among the metabolites potentially
present in the mouse blood plasma samples. Therefore, [U–13C]-
glucose was used as the internal standard in this study, as a less
expensive and least interfering with the measurements labelled
compound.

The second type of biases found in a GC–MS metabolomic
dataset result from the derivatization step that is required for the
metabolites to become volatile and thermally stable to be measured
by the GC. These biases affect the various metabolites in a differ-
ent way. They may originate from the acquisition of the various

metabolic profiles under different GC–MS equipment conditions
and/or at different stages of derivatization; if these biases are not
corrected, there is a risk of assigning biological significance to dif-
ferences due to incomplete derivatization and/or matrix effects (see
[18,19]). An additional source of these biases for some metabo-

rofiles of the non-standardized metabolic profiles of the 19 plasma samples. The red
r to the % profile variation from the original experimental space carried by principal
the green groups are shown in Table 2. (For interpretation of the references to color
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ites could be the formation of multiple derivatives, whose relative
oncentration with respect to the original metabolite concentra-
ion may vary with the derivatization time. To avoid introducing
ny related biases to the metabolic profiling analysis, the deriva-
ization time at which the metabolic profiles are acquired, and
he derivative peak area, which will be used in the multivariate
tatistical analysis as proportional to the concentration of the orig-
nal metabolite, have to be carefully selected (see [18,19]). For the
wo-step derivatization procedure used in this study, Kanani and
lapa [18,19] divide the metabolites, which react with the deriva-

ization agents, into three chemical categories: the first comprises
he metabolites that contain neither ketone- nor amine-groups,
he second comprises the metabolites which contain ketone- but
o amine-groups and the third those metabolites which contain
mine-groups. The first category forms only one derivative per
etabolite. Due to the methoximation step, the second category

orms two isomeric derivatives per metabolite, whose concentra-
ion ratio is constant based on the underlying chemistry. Thus,

arring changes in the GC–MS equipment conditions, the ratio of
he two isomeric derivative peak areas should remain constant
mong all acquired metabolic profiles [18]. This robust quality con-
rol criterion was used in the present study to ensure constant

able 2
he positively significant metabolites in the set of profiles colored “red” compared to th
nalysis.

Positively 
significant 
metabolite 

no. 

Positively significant metabolite nam

unknown_P2922 1. 

glucose 2. 

3. unknown_P0421 

2-hydroxyglutarate 4. 

unknown_1509 5 

threonate 6. 

chiro- or scyllo-inositol 7. 

galactonate 8. 

glycerate 9. 

unknown_1935 10. 

glucopyranose (peak 1) 11. 

glucopyranose (peak 2) 12. 

unknown_P1750 13. 

isocitrate 14. 

unknown_P2427 15. 

succinate 16. 

alpha-hydroxyisobutyric acid (putat17. 

galacturonate 18. 

erythritol 19. 

d1
 =

 1
.5

1 

d2
 =

 1
.2

5

ignificance threshold value d1 corresponds to zero False Discovery Rate (FDR)-median
hreshold value d2 corresponds to 0.04% False Discovery Rate (FDR)-median (i.e. 0.75

etabolites). The metabolites are shown in decreasing order of significance. The correspo
B 879 (2011) 1467–1475 1471

GC–MS equipment conditions among all compared metabolic pro-
files. Based on the ratio of the 323 marker ion peak areas of the two
derivatives of the internal standard [U–13C]-glucose, four metabolic
profiles were excluded from further analysis (shown in orange
background in Supplementary File 2A). Moreover, since each of the
derivative peak areas of the second category of metabolites is pro-
portional to the concentration of the original metabolite, only one
of the two in each of the remaining metabolic profiles is used in
multivariate statistical analysis to avoid mathematical biases (see
also [19]); the smallest derivative peak area is usually excluded as
prone to a higher signal to noise ratio.

The third category of metabolites may sequentially form more
than one silylation derivative; thus, unless the silylation of these
metabolites has fully completed and only the final derivative is
present, more than one peak of varying RPA, depending on the
stage of silylation, are to be detected in the metabolic profile. It
has been shown [18] that complete silylation of all the third cat-
egory metabolites may require more than 20 h; so long silylation

times render the procedure impractical, while compound degra-
dation effects may also become an issue. In [19], a strategy for the
correction of the GC–MS metabolic profiles from biases originat-
ing from the presence of multiple derivatives for the third category

e set of profiles colored “green” in the HCL tree of Fig. 2A based on unpaired SAM

e Order of 
significance 

ive) 

and 0.03% FDR-90-th percentile (i.e. 0.25 false positive metabolites). Significance
false positive metabolites) and 0.11% FDR-90-th percentile (i.e. 2 false positive
nding SAM graph is shown in Supplementary File 3A.
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etabolites was introduced. The only requirement for this strategy
o be correctly applied is that all metabolic profiles are acquired at
ilylation times at which all the original third category metabo-
ites in the sample have been fully converted into at least one of
heir derivatives, while the silylation reaction may still be proceed-
ng. It is thus important for the experimentalist to determine the

inimum silylation time, TM, for this condition to be valid for a
articular biological sample [see 19]. At these silylation times, it

s the weighted sum of all derivative RPAs (i.e. the cumulative or
ffective RPA) of a third category metabolite that is proportional
o its concentration in the original sample and can be used as its
epresentative in any following statistical analysis to extract bio-
ogically relevant conclusions. Kanani and Klapa [19] introduced a

ethodology for the estimation of the weights of the derivative
PAs in this weighted sum. For the methodology to be applied, the
etabolic profile of one sample from the experimental set should

ave been measured at multiple silylation times after TM.
It has been shown (see [18]; also in one of the blood samples

sed in this study (data not shown)) that after 6 h, the silylation of
he compounds without amine-groups will have been completed
nd the original amine-group containing metabolites should have
een fully converted into at least one of their derivatives. There-
ore, all the metabolic profiles of the present study were acquired
t least twice at silylation times longer than 6 h. Only alanine was
he third category metabolite with more than one derivative peak
etected in the metabolic profiles. The weights of the two ala-
ine derivative RPAs for the estimation of its cumulative RPA in all

etabolic profiles were calculated based on the metabolic profile of

ample HF16, which was measured at seven silylation times equal
o or longer than 6 h. The two derivative RPAs of alanine in each

etabolic profile were then replaced by its cumulative RPA. Since
he peak areas of derivatives attributed to third category metabo-

ig. 3. (A) HCL (Euclidean distance for both profiles and metabolites) and (B) PCA of the
hreshold value d1 = 1.91 (see Fig. 2 and Table 2). The red and green color-code refers to t
C2 and PC3 are defined as in Fig. 2. (For interpretation of the references to color in this fi
B 879 (2011) 1467–1475

lites of currently unknown identity cannot be combined based on
the previously mentioned data correction strategy, they were fil-
tered out of further analysis to avoid introducing any undesired
biases. After these data validation, normalization and correction
steps were performed (see also Section 2), the metabolomic dataset,
now corrected from derivatization biases, was further filtered from
peaks that were inconsistently detected and/or with a high sig-
nal to noise ratio and/or with significant carry over and/or with
high average coefficient of variation between injections over all
the samples, leading to the final set of 50-metabolite profiles (see
Supplementary File 2B). The latter was used with an 80% cut-off
in multivariate statistical analysis to extract biologically relevant
conclusions as described below.

3.2. Multivariate statistical analysis of the metabolic profiles

This study comprised four groups of mice differing in diet (low-
fat vs. high-fat diet) and duration of diet (12 vs. 15 months).
According to Table 1, there was no statistical difference between the
mean BWs of the 12-month and 15-month high-fat diet groups. This
was also true for the low-fat diet animals. However, in this group,
the plasma sample of only one 12-month diet mouse was available.
Moreover, one (LF4) of the three 15-month low-fat diet mice was of
significantly lower BW than the other two, even lower than the 12-
month low-fat diet mouse. The mean BW of the high-fat diet mouse
groups was higher than the mean BW of the same duration low-fat
diet groups. However, there was an 11–13% variation in the BW of

the mice within the high-fat diet groups; this macroscopic physio-
logical parameter implies diversity in the metabolic physiology of
the animals within these groups.

Indeed, hierarchical clustering (HCL) analysis of the non-
standardized metabolomic dataset identified two main clusters,

profiles of the metabolites identified as significant from SAM for the significance
he same profiles assigned the particular color in the analyses shown in Fig. 2. PC1,
gure legend, the reader is referred to the web version of the article.)
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Table 3
The positively significant metabolites in the set of profiles colored “purple” compared to the set of profiles colored “light-blue” in the HCL tree of Fig. 3A, based on unpaired
SAM analysis (standardized RPA values).

Positively 
significant 
metabolite 

no. 

Positively significant metabolite name Order of 
significance 

erythritol.1

2. alpha-hydroxyisobutyric acid (putative) 

3. di-hydroxybutyrate 

4. unknown_1935 

5 unknown_P0421 

6. chiro- or scyllo-inositol 

threonate.7

glycerol.8

2,4-bis hydroxybutanoate 9. 

glucopyranose (peak 1) 10. 

glucopyranose (peak 2) 11. 

unknown_952 12. 

glycerate 13. 

gluconate 14. 

unknown_P2922 15. 

2-hydroxy-butanoic acid 16. 

isocitrate.71

unknown_1509 18. 

glycolate 19. 

2-hydroxyglutarate 20. 

unknown_P1750 21. 

22. galactonate 

unknown_P3106 23. 

glucaric acid-lactone 24. 

d1
 =

 1
.7

3 

d2
 =

 1
.3

9

S an and
v ositiv
T AM gr

w
d
b
p
“
r
6
t
m
t
p
o
t
t
w

ignificance threshold value d1 corresponds to zero False Discovery Rate (FDR)-medi
alue d2 corresponds to 0.023% False Discovery Rate (FDR)-median (i.e. 0.66 false p
he metabolites are shown in decreasing order of significance. The corresponding S

hich comprised both high-fat and low-fat diet mice of both
iet durations. The two clusters are shown as the red and green
ranches of the HCL tree in Fig. 2A; using the same color scheme in
rincipal component analysis (PCA) (see Fig. 2B), the “green” and
red” metabolic profiles are observed on the positive and negative,
espectively, sides of principal component 1 (PC1), which carries
9% of the variance among the profiles in the original experimen-
al space. Significance Analysis for Microarrays (SAM) indicated 19

etabolites whose increase in concentration in the “red” compared
o the “green” group was discriminatory for this separation. The

ositively significant metabolites are shown in Table 2. While two
f the most discriminatory metabolites are of yet unknown iden-
ity, i.e. the unknown P2922 (first) and unknown P0421 (third),
he second most discriminatory metabolite, whose concentration
as significantly increased in the “red” compared to the “green”
0.05% FDR-90-th percentile (i.e. 1 false positive metabolite). Significance threshold
e metabolites) and 0.125% FDR-90-th percentile (i.e. 3 false positive metabolites).
aph is shown in Supplementary File 3B.

group, was glucose (its two detected cyclic forms, glucopyranose
(peak 1) and glucopyranose (peak 2) are also among the positively
significant metabolites). Interestingly, the sixth most discrimi-
natory metabolite is scyllo-inositol. Actually, the measured peak
area could in theory correspond to both scyllo- and chiro-inositol,
because these two stereoisomers of inositol cannot be distin-
guished by GC–MS [25]. However, scyllo-inositol is the only inositol
stereoisomer apart from myo-inositol whose increase in concentra-
tion has been implicated with hyperglycaemic conditions [26]. The
presence of isocitrate, succinate and 2-hydroxyglutarate, the latter

being a direct product of alpha-ketoglutarate, among the positively
significant metabolites, suggests a higher tricarboxylic acid (TCA)
cycle activity in the “red” compared to the “green” mouse group.
Glycerate, galactonate and threonate are also among the positively
significant metabolites.
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Table 4
(A) The positively significant metabolites in the set of the “red” profiles in Fig. 3B compared to the set of the “green” profiles except LF4. (B) The negatively significant
metabolites in the profiles of the 15-month diet mice, except mice LF4 and HF5, compared to the profiles of the 12-month diet mice, based on unpaired SAM analysis
(standardized RPA values).

A. 
Positively 

Significant 
Metabolite 

no 

Positively Significant 
Metabolite name 

B. Negatively 
Significant 

Metabolite no 

Negatively Significant 
Metabolite name 

Order of 
Significance 

succinate 1. unknown_P2922 1. 

unknown_P3493 2. 2-hydroxyglutarate 2. 

3. galactonate unknown_P3134 3. 

citrate 4. unknown_1509 4. 

unknown_P3106 5 galacturonate 5 

unknown_P2427 6. threonate 6. 

fumarate 7. glucose 7. 

galactonate 8. unknown_P2427 8. 

alanine 9. unknown_P0421 9. 

phosphoric acid 10. unknown_P1750 10. 

2-hydroxyglutarate 11. succinate 11. 

isocitrate 12.   

d1
 =

 1
.4

7 

d3
 =

 0
.9

1 

d2
 =

 0
.7

0 

( media
( -medi
t
T AM gr

p
t
L
w
s
g
i
M
t
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h
g
fi
m
f
l
e
H
c
P

d
m
s
t
t
l
g
h

A) Significance threshold value d1 corresponds to zero False Discovery Rate (FDR)-
B) Significance threshold value d2 corresponds to 0.16% False Discovery Rate (FDR)
o zero FDR-median.
he metabolites are shown in decreasing order of significance. The corresponding S

It is important to discuss the members of the “red” metabolic
rofile group. These comprise animals from both the 12-month and
he 15-month high-fat diet mice and even one low-fat diet mouse,
F2. The latter was indeed the heaviest among the low-fat diet mice,
ith a BW larger than two of the 12-month high-fat diet mice of this

tudy. LF2 was measured with a very high concentration of plasma
lucose (third highest) and the highest concentration of scyllo-
nositol (see Supplementary File 2B) among all animals of the study.

oreover, the “red” metabolic profile group contains the two and
hree, respectively, heaviest 12-month and 15-month high-fat diet

ice (i.e. HF11–12 and HF1, HF2, HF6). However, mouse HF4, which
ad the same weight as mouse HF1, is clustered in the “green”
roup. It is of interest to note that the “red” plasma metabolic pro-
le group also comprises the profiles of the 12-month high-fat diet
ice HF13 and HF14. This would not have been directly apparent

rom the BW measurement table, as these two mice are among the
ightest of the high-fat diet animals; actually, HF14 was the light-
st of all, with a BW similar to the low-fat diet mice of this study.
owever, HF14 was observed with the highest among all mice con-
entration of glucose, succinate and galactonate (unknowns P2427,
3106, P3134 too) in its blood plasma (see Supplementary File 2B).

Within the “green” metabolic profile group, it is of interest to
iscuss the plasma metabolic profile of the 15-month low-fat diet
ouse LF4, whose BW was very low at the time of sample acqui-

ition. As it can be observed in Fig. 2A, its profile “branches out” of

he other “green” profiles in the HCL tree. LF4 was measured with
he lowest concentration of the three most discriminatory metabo-
ites between the “red” and “green” groups (i.e. unknown 2922,
lucose and unknown P0421) and 2-hydroxybutanoate, but the
ighest of alanine, fructose, pyruvate, citrate, glycerol-3-phosphate
n and 0.06% FDR-90-th percentile (i.e. 0.75 false positive metabolite).
an (i.e. 1.75 false positive metabolites). Significance threshold value d3 corresponds

aphs are shown in Supplementary File 3C and D.

(its concentration was dramatically higher than in any other plasma
profile) and glycerol (its concentration was much higher than that
seen in any other low-fat diet mouse plasma sample) and the sec-
ond highest of lysine. This profile is consistent with active lipolysis
(based on the increased concentration of glycerol-3-phosphate and
glycerol) and proteolysis (based on the increased concentration of
alanine, lysine and pyruvate) in LF4, as a consequence of the pro-
longed fasting. Such metabolic state could justify its significantly
low BW.

Taking into consideration that multivariate statistical analysis
on the non-standardized metabolomic values cannot reveal some
interesting features of the dataset due to the large difference in
the order of magnitude between the metabolites, HCL analysis was
also carried out on the standardized metabolic profiles (see Section
2). The HCL heat map (Euclidean distance) shown in Fig. 3A vali-
dates the unique metabolic profile of LF4 among the other plasma
samples, as discussed earlier. The rest of the metabolic profiles are
divided into two groups, which coincide to a great extent with the
“green” and “red” groups described earlier, with a higher metabolic
activity in the latter (currently assigned a purple color) than the
former (currently assigned a light blue color) as observed from the
heat map. All mice on a 15-month high-fat diet with a BW less than
the mean BW of the 12-month high-fat diet group, except mouse
HF16, clustered together in the “lower metabolic activity” cluster.
The HF16 mouse profile indicates a higher concentration of ketone

bodies in its plasma (see purple metabolite cluster on the right of
the heat map), a pattern which is consistent with keto-acidosis and
insulin resistance. The profiles of HF1, HF2, HF6, HF13 and HF14,
all of which belong to the “purple” group, were consistent with
the expected hyperglycaemic metabolic state, with high concentra-
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ions of glucose, scyllo-inositol and TCA cycle activity intermediates
see the heat map of the red and green metabolites in these groups
n Fig. 3A). Moreover, the profiles obtained for all of these mice,

ith the exception of mouse HF14, also imply active keto-acidosis
s a result of hyperglycaemic conditions. SAM analysis between the
ight blue and the purple metabolic profiles of the plasma samples
erified these observations indicating as most discriminatory the
igher concentrations of erythritol, scyllo-inositol, the cyclic forms
f glucose, ketone-bodies, glycerol, gluconate, threonate and gly-
olate in the purple compared to the light blue cluster (see Table 3).

The 3-D PCA graph of the standardized metabolic profiles can
e observed in Fig. 3B. It is of importance to note that (a) all mem-
ers of the previously mentioned “red” mouse group are observed
n the negative side of PC1 except from mouse LF2, (b) despite the
igh variance between their metabolic profiles, all low-fat diet mice
re observed on the same (positive) side of PC1, and (c) the 15-
onth mouse plasma samples are separated from the 12-month
ouse plasma samples on PC2; the only exceptions (apart from
ouse LF4) are the heaviest 12-month high-fat diet mouse, HF12,
hich appears on the positive side of PC2 and the 15-month high-

at diet mouse HF5, which had a particular profile as it can be
bserved in Fig. 3A. The list of significant metabolites that separate
he two sides of PC1 (mouse LF4 was excluded from the analy-
is and HF16 was considered together with the profiles on the
ositive side of PC1) is shown in Table 4A, indicating the glucose
oncentration, the TCA cycle activity (through the measurements
f succinate, isocitrate and 2-hydoxyglutarate) and the concentra-
ion of the acids threonate, galactonate and galacturonate, to be
ignificantly higher in the profiles of the negative (“red”) side of
C1 in Fig. 3B. These observations imply a more severe hypergly-
aemic state in the “red” group compared to the other mice, as
t was shown with the non-standardized profiles too. The results
f SAM analysis between the plasma metabolic profiles of the 12
onth and 15 month diet mice, excluding LF4 and HF5 (Table 4B)

ndicated the energy metabolism (i.e. the TCA cycle activity, as
bserved through the measurements of the metabolites, succinate,
itrate, fumarate, and 2-hydroxyglutarate, and the concentration
f phosphoric acid) and the concentrations of plasma alanine and
alactonate to be characteristically higher in the 12-month com-
ared to the 15-month diet mice. When only the high-fat diet mice
re considered in this comparison, only the first four metabolites in
able 4B are identified as significant, including succinate and citrate
s the two known.

. Conclusions

While GC–MS-based metabolomics is a powerful technique for
he analysis of biofluids in a number of applications, the required
erivatization step introduces an additional set of biases, which
ffect each metabolite in a different way. The dataset has to be
ppropriately corrected and normalized before used to extract

iologically relevant conclusions. In this study, we measured the
C–MS metabolic profiles of a set of plasma samples from mice
aintained on 12- or 15-month long low- or high-fat diets. The

pplication of a recently developed GC–MS metabolomic data
alidation and normalization/filtering protocol enabled the iden-

[

[

[
[
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tification and filtering of non-consistently measured profiles and
metabolites, ensuring a final metabolomic dataset free of deriva-
tization biases. The final 48-metabolite profiles were analyzed
using multivariate statistical analysis techniques. The acquired
results indicated (a) increased energy metabolism activity in the
12- compared to the 15-month diet mice and (b) the presence of
subpopulations of different metabolic physiology within the main
four mouse groups, which correlated well with the observed differ-
ence in the BW of the animals. In the case of hyperglycemic high-fat
diet animals, the metabolic profile agreed well with current knowl-
edge about the relevant metabolic physiology, indicating in most
cases simultaneously active ketoacidosis and insulin resistance.
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